A CHANNEL ABOVE A FLOW OF GROUNDWATER ALONG AN INCLINED WATER TABLE
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ABSTRAGCT: Formulas due to Numerov [2] for steady-state infiltration
into a homogeneous isotropic soil have been used to compute the ef=
fects of the physical parameters on the infilwration characteristics.

1. Formulation of the problem and form of solution. It sometimes
happens that a sloping impermeable horizon lies under soil containing
groundwater; the tilt causes the groundwater to flow, and the surface
of the water table in an unbounded region in the steady state is par-
allel to the underlying horizon ({1], chapter X, §5). The form of the
flow alters if there are irrigation channels or ditches; in the first case
there is influx, and in the second a lowering of the water table near
the ditch. Here this problem is considered mainly for a channel (ir-
rigation).

If the water in the channel {drain) is shallow, Numerov's solution
[2] via the theory of functions gives the dependence of the complex
coordinate z = x + iy and of the complex potential w = ¢ + iy (in which
@ is the velocity potential and ¢ is the cwirent function) on the complex
parameter & = £+ in, which varies within a half~plane. Here we have
to distinguish the three possibilities illustrated in Figs, 1-3.

(a) The water enters the soil throughout the width of the channel.
The left branch in the free surface has its minimum at E, while the
streamline EC separates the groundwater from the water entering from
the channel. This case arises if the parameters of the problem are as
follows [1]:

r<l VIi—5, (1.1)

in which h is the depth of the flow to the left at infinity (equal to the
depth of the groundwater flow in the absence of the channel), which
(following Numerov) we call natural flow, while by is the depth of the
flow to the right at infinity and 8 characterizes the position of point

B on the real axis of plane ¢ (Fig. 3).

(b) The water enters the soil through a part EB of the bottom of the
channel (Fig. 1b) while part AE drains the groundwater flow, and along
KA (the drainage area) the groundwaters pass downward and upward,
The rest of the flow, which is bounded from above by the streamline
DEC, passes by the channel down the impermeable horizon and mixes

with the water entering from the channel. The condition for this to
occur is

nVI—RB<h<h/VI—B. (1.2)

(c) Flow to the channel occurs from both sides in such a way that
we may term if a drain (Fig. Ic). This case occurs when

h>kfVTI—B, (1.3)

the right branch BC of the water table has a maximum, and drainage
areas exist on both sides of AB. The part of the flow bounded from
above by DEC enters the drain.

Numerov's solution covers all three cases and takes the following
form when the coordinate systems are chosen in accordance with Figs.
1-3:
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Here T is the depth of the impermeable horizon from the bottom
of the channel under the origin, 7o is the angle to the horizontal of
that horizon, and g and gy are the reduced flow rates in the upper and
lower parts, respectively, which are related to h and hy by (1.5}.

We consider T, ¢, and h (or q) as initial parameters to be spec~
ified in the solution of (1.4), while hy and the quantity q in the second

Fig. 1. Region of infiltration z.
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Fig. 2. Region of the complex potential w.

W NEEER o0

—*eﬂ}n&/a//p o

—oo 0lE 1 e —oo (| {offp oo
‘7] b —17} ¢

Fig. 3. Accessory half-plane of the complex variable &,
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equation in (1.5) are to be determined, themselves serving to define
the reduced infiltration flow rate qq per unit length of channel:

o = g1 — ¢ = (b1 — k) sin no cos nex. (1.6)

Also, parameter B of the conformal representation is unknown.
Numerov used the following two conditions (Figs. 1 and 3) to determine
this:

z{oc) =10, z(1/P)=1. (1.7)
From the second equatioﬁ in (1.3) we have
o) =0, ©(1/B)=ilg— q). (1.8)

The first formula in (1.4) is used with (1.5), (1.7), and (1.8) to
get
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2. Calculations and preliminary transformations. We solve (1.9)
for hy:
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We substitute (2.1) into (1.10) to get an equation for 8. We denote
the left-hand side of this equation by F(8) to get

F =L (2.2)

The first step in the program we wrote for the M=20 computer is
to determine from the interval (0.1) as the root of (2.2). This pro-~
cedure is performed by division into halves ({3], chapter IV, §3),
which is applicable if F(B) is a monotonic function.

As F(0) = 0, F(1) ==, F(B) increases as B goes from zero to one.
We cannot determine whether 8 increases monotonically (which is
equivalent to establishing the uniqueness of the solution to (2.2)) by
direct differentiation of F(B) with respect to 8; however, we hypothesize
that the increase in F(8) is strictly monotonic on an intuitive basis and
from calculation results, i.e., we assume that

‘idgi—) = Z—é >0, (2.3)

and we examine from the physical viewpoint some relationships derived
from the above formulas.

We differentiate (1.9) and (1.11) with respect to 8:
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It follows from (2.4) that 8f(B,)/88 changes sign in the interval
(0.1) while (2.5) indicates that this is possible only when dh;/d8 and
h — /(1 — B are opposite in sign, the other terms on the right in
(2.5) being positive throughout the region {0<t<1)X(0<B< L} We
also assume that (2.3) is correct to get

Ay
1—

LTS Py —
or
di V

dhy By
m‘<0 for > —iv__?-_ﬂ. (2.6)

Returning now to (1.1)~({1.3), we see that in cases (a) and (b)
(filtration from the channel into the ground), h increases with I, i.e.,
as the infiltrating part of the channel expands. The second pair of
inequalities in(2.5) corresponds to case (c) and isinterpreted analogously:
in bilateral flow to a drain, widening of the latter leads to greater
uptake of groundwater, which is seen as reduced hy. However, the fall
in hy ceases at a certain I; this follows from the fact that 8 — 1 for
1-> o, and (2.1) gives hy — «, and on further rise case (c) becomes
case (b).

In the derivation of 8 we determine also by, and also qq from (1.6);
then the program has provision for calculating the coordinates of the
free surface. We omit the parametric equations for the free surface,
which for the right branch BC (1 < § < 1/B) are derived directly by
separating the real and imaginary parts in the first equation of (1.4),
and which for the left branch AD (~= < £ < 0) are obtained by firs
transforming the right-hand side of this equation while avoiding the
singularities. One of the basic points is as follows in reducing the initial
formulas to a form suitable for computer use.

Parameter § varies outside the range [0,1] for points on the free
surface, and so the integral on the right in the first equation of (1.4) is
not singular, but the integrand has singularities at the ends of the range
of integration. The integral is calculated numerically (by Simpson's
rule) on the computer, so these singularities must be avoided by iso-
lating end parts [0,&] and [1 — ¢€,1]. The remaining interval [e,1 —
— &] is covered by the computation, while the integrals for {0,&] and
[1 — &,1] are represented by approximate expressions.

Numerov's solution and the program based on it are suitable for all
three cases of section 1. Special attention was given to cases charac-
teristic of irrigation, where h < T, i.e., case (a) or (b) of section 1.
For each particular case we specified ®=1/T, 1 =h/T and «, and
thereby derived dimensionless values for the geometrical characteristics
of the flow (assigned to T) and of the influx from the channel.

o =g/ T=Qy/ kT,

in which Q, is the flow from unit length of channel (m"’/day per meter)
and k is the soil infiltration factor.

3. Results. The purpose was to examine g, and the shape of the
free surface in relation to 1%, hY, and e. The results are as follows.

1) Change in 1° for a given T means change in width Z, and this
has very little effect on the infiltration characteristics under certain
conditions, as Fig. 4 shows for logn as a funcuon of log 1* for ' =
=0.2 and « of 107, 10, 107, and 10™° via the data of Table 1.

Fig. 4. Dependence of log 1 on
log I for v’ = 0.2.
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Table 1

7 and 1} (& = 0.2)

« 8 6.10-+ 24-16~4 0.0156 0.125 0.35%
1 2.513.10~5 1.036-10-+ 0.005037 0.04252 0.1389
10-% B 1.0000 0.2426 0.004983 5.910- 10—+ 1.810-10~4
o 0.999856 0.999926 0.999956 0.999973 0.939985
i 2.509- 10—¢ 3.287.10-% 9.005261 0.06274 0.1331
10-4 " 1.0000 0-7638 0.0477% 0.005878 0-001807
he 0.993567 0.909225 0.999558 0.999%35 0.999846
1 9.469. 10— 2.566-10- 7.486.10-2 £.486-10—2 0.1410
10— n 0.9999 0.9700 0.3339 5.584. 10~ 1.778-10~%
R 0.985845 0.992319 0.995610 0.997364 0.998464
1 0.02130 0,02299 0.02858 6.540. 102 0.1603
10-2 n 0.9999 ~99%69 0.8334 0.3720 0.1539
By 0.878444 0.929881 0.953765 0.975009: 0.985518
a a 0.646 0.875 0.9844 0.99975586 0.999999941
° 0.3310 0.6619 1.3239 2.6477 5.2057
10—+ n 7.594-10-% 3.797.40~8 1,899-10- 9.496.10-* 4747100
hy® 0.999995 1.000007 1.000028 1.000069 1.000152
I 0.3312 0.6621 1.3242 2.6489 5.2098
10~ M 7.589. 40—+ 3.796.10—* 1.899. 10— 9.496.10-5 4.571-10-5
: ny® 0. 999949 1.000071 1.000281 1.00069% 1.001526
I 0.3 0.6642 1.3280 2.6599 5. 3408
10-3 n 7. 542 10-3 3.787-10-3 189910~ 9.531.10—+ £.796:10~4
e 0.999493 1.000713 1.002816 1.006966 1.015370
i 0.3813 0.6849 1.3654 T34 75
10 9 7.109.10~= 3.702-10-% 1.806-16-2 9.874.10-3 5.248.10~8
et 0,995587 1.007645 1.0289 1.072229 1.165203
Table 2
Relation between Z hl, n and the Quantities x5 (6 = 0.1, 0.01, 0.001)
a 10~5 10-4
o | oos | o2 | o5 | os 005 | o0z | o5 0,9
I o | 2984105 2.503.10~5| 1 571.10-5} 3.142.10-¢] 2.979.10~% | 2.509-10~+ | 1.568.40~¢ | 3.436.10-5
2 RO |0.9038  |0.9999 [0.9999  |1.0000 0.9983 0.9986 0.9994 0.9998
> 4 |1.0000 |1.0000 |{.0000 |1.0000 1.0000 1.,0000 1.6000 1,0000
Q| 1 =g 1] 30672 36544 38597 - 3062,3 3547.8 3843.1 -
{1 x0.01 1] 37205 53152 78297 69624 3705.9 5301.6 7804.1 6877.8
| %9 gt} 41144 68069 115464 | 135761 4409.7 6810.6 11526 13685
b} ° 152957 15,2057 [5.2957 5.2957 §.2998 5. 2998 5.2997 5.2097
2 ne §1.0002  |4.0002  {1.0002 | 1.0002 1.0015 1.0015 1.0015 1.0015
2 n  {5.637.10~¢| 479740~ 1.967-10~4 5.94-10~7] 5.640-20-% | 4 75(.10-¢ 12.973.405 | §.018-10-¢
S | Ixp.4 130877 35548 38599 — 3065.9 3572.9 3845.6
< | [ %0.014] 37211 53157 78304 69625 3726.0 533(.3 7807.2 69i2,6
d |1 xp gy 41150 68074 115067 | (35762 4114.8 6822.4 11528 13620
« 10-2 10-2
ho 0 | o2 | o5 | o9 0.05 0.2 0.5 0.2
1 ° 10.002032 |0.002468 |0.001548 o 0003086 | 0.02528 0.02130 0.01331 | 0.002664
< R’ |0°9832  [0.0858 {0.9912 | 0:9082 0.8556 0.8784 0.9240 | 0.9848
i n |0.9999  {0.9999 10.9909 | 0.9999 0.9999 0.9999 09999 | 0.9999
d | I=g.41{300.98 [350.58 | 378.60 — 26,008 30.754 33.383 -
1xp011]366.23 |525.81 |773.21 | e83.1t 32,934 48.508 73584 65.66t
Ix0.001}]405.78 | 674.63 |1145.5 |1350.9 36.234 63.714 112,30 13512
3 °|5.341 {53108 |5.304 5.3397 5.7769 5.7761 5.7685 5,7810
S R [1.0456 40156  {1.045& {10454 1.1653 1.1653 1.1650 1.1648
2 n | 5.678-10-4 4.796-404] 3.032.10—% 6.788.10-5|  0.00606 0.00525 0.00762 | 0.00144
S | I %0.41]306.44 65,51 384.98 — 780 5.162 39.416 —
= |1xg.01 1] 871.81 77956 (69598 |37.183 37.183 53.353 78.418 74449
8 \t=po0il 41238 |est.e7  |ms1.81 | 1359.8 41.804 68.567 148,24 145.89
an-g The quantity
g0 Qo
NnN= T = —'[ 1 @ l)
“ = . » - >
9 »] ! L L L J has been called [4] the flooding coefficient; it represents the ratio of
005 a0 4 020 025 30 : : s .
. 0 the actual influx Qg to the flow rate ki in free infiltration.
Fig. 5. Dependence OfDG.o on o for I' = 0.5 and The lines of Fig. 4 are almost straight, and the slopes differ litile
h" = 0.3, from —1; they are represented approximately by
ﬂi.% o Ign ~lgd — (1 —wlglt=igB — (1 —p)lgi, (3.2)
i3 .

. - T 1 7
25 . 10 1% 2.0 26 40
Fig. 6. Dependence of g on Tforz = 0,6 m
and h = 0.3 m.

in which B and p are constants. The parameter B is discussed below,

while ¢ is a quantity of the order of 0.0001-0.03 (increasing with &).

The g for the lines in Fig. 4 are 0.023, 0.002, 0.0002, and 0.0001.
We transform (3.2) to

n = B}
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or, from (3.1),

go = BI*. (3.3)

Then (3.3} reflects directly the weak dependence of qq on Z.
2) There is a linear dependence of gy on h, T, and « for &< 0.0%,
and the following approximate relation applies:

qo =~ ne (T — h). (3.4)

Numerov [1]noted this, and our calculations confirm it completely.
Relation (3.4) is illustrated by the dependence of qq on o (Fig. 5 for I =
= 0.5, h=0.3, T=1)and on T (Fig. 6 for I = 0.5 and h = 0.3). Figure
5 shows that the straight-line dependence of qy on « for small «
gradually ceases to apply as o increases. In Fig. 6, qo(T) for @ = 0.01
is almost a straight line, while a curve applies for o = 0.1. However,

o = 0.1 (inclination 18°) is outside the practical range of «.

Comparison of (1.6) and (3.4) shows that hy &~ T for small a, which
Numerov [1] noted and which is confirmed by Table 1. From (3.3} and
(3.4) we get approximately that

@0 = ae (T — W)l (B = aax (T — hY), (3.5)

in which p is a small constant.

3) The left and right branches of the free surface have asymptotes
parallel to the impermeable horizon and at distances h and hy from
the latter (Fig. 1). The calculations showed that the free surface very
nearly coincides with the asymptote on the-right after a very short
distance, whereas the depth exceeds the natural depth for a con-
siderable distance on the left.

In the calculations on the left branch we determined the values

Xg of the x-coordinate for which Ay < &6, in which Ay is the vertical
distance between the free surface and the asymptote. Table 2 gives

the absolute values (by virtue of the choice of coordinate system, x§ <
< 0) for 6 of 0.1, 0.01, and 0.001 (the linear characteristics are referred
to T).

The quantity Ay can serve as a measure of the water-table rise,
while xg indicates the range of that rise. The latter concept is as ar-
bitrary as that of the radius of action of a borehole when the depression
funnel is of unlimited size. The dependence of xg on I is very slight,
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specially for small «, so the table gives only the largest and smallest
values of |xg| for each of the values of & and h’. The first carresponds
to the minimum value of 8 out of those used in the calculations (B &
~ 6 «107%), while the second represents the maximum value of 8
(=1~-6 -\10'8). Since § = 0.1 equals the depth of the natural flow for

w® = 0.9, it cannot serve as a measure of the water-table rise, and so
the corresponding columns of Table 2 do not contain |xg.4. The

|%¢.4] for the other 1 in the table is of the order of 1/, which de-
fines the distance from the channel to the point where the imper-
meable horizon meets the horizontal axis.

4) If h =0, the calculation formulas are derived directly from
the equations for the general case if we put q = 0 in these. The cal-
culations confirm Numerov's approximate relations for the coordinates
L and H of the point at which the free surface emerges on the imper~
meable layer in the upper part of the flow:

L= —Tectgaa, H=0.

These equations indicate that here the flooded zone extends to the
point at which the impermeable layer meets the horizontal coordinate
axis, and the free surface in that zone is nearly horizontal, with vir-
tually no infiltration.
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