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ABSTRACT: Formulas due to Numerov [2] for steady-state infiltration 

into a homogeneous isotropic soil have been used m compute the ef- 

fects of the physical parameters on the infiltration characteristics. 

1. Formulation of the problem and form of solution. It sometimes 

happens that a sloping impermeable  horizon lies under soil containing 

groundwater; the t i l t  causes the groundwater to flow, and the surface 

of the water table in an unbounded region in the steady state is par- 
a l le l  to the underlying horizon ([1], chapter X, w The form of the 
flow alters i f  there are irrigation channels or ditches; in the first case 

there is influx, and in the second a lowering of the water table near 
the ditch. Here this problem is considered mainly for a channel (ir- 

rigation). 
If the water in the channel (drain) is shallow, Numerov's solution 

[2] via the theory of functions gives the dependence of the complex 
coordinate z = x + iy and of the complex potential to = r + ir (in which 

is the velocity potential and ? is the current function) on the complex 

parameter C = ~ + i~], which varies within a half-plane.  Here we have 

to distinguish the three possibilities illustrated in Figs, 1 -3 .  
(a) The wamr enters the soil throughout the width of the channel. 

The left branch in the free surface has its minimum at E, while the 

streamline EC separates the groundwater from the water entering from 

the channel.  This case arises if the parameters of the problem are as 

follows [1] : 

h < h: 1:{ --  ~, (LI) 

in which h is the depth of the flow to the left at infinity (equal to the 

depth of the groundwater flow in the absence of the channeI), which 

(following Numerov) we ca l l  natural flow. while hi is the depth of the 

flow to the right at infinity and/5 characterizes the position of point 

B on the real axis of plane C (Fig. 8). 
(b) The water enters the soil through a part EB of the bottom of the 

channel (Fig. lb)  while part AE drains the groundwater flow, and along 

KA (the drainage area) the groundwaters pass downward and upward. 

The rest of the flow, which is bounded from above by the streamline 

DEC, passes by the channel down the impermeable  horizon and mixes 

with the water entering from the channel.  The condition for this to 

o c c u r  i s  

h: VV~-- ~ < h < h:l K~ - ~ (1,2) 

(c) Flow to the channel occurs from both sides in such a way that 

we may term it a drain (Pig. l e ) .  This case occurs when 

h > h,/ l / t  -- ~, (1.3) 

the right branch BC of the water table has a maximum, and drainage 

areas exist on both sides of AB. The part of the flow bounded from 

above by DEC enters the drain. 
Numerov's solution covers aI1 three eases and takes; the following 

form when the coordinate systems are chosen in accordance with Figs. 

1-3: 

z = - -  T ctg nu T q q- i ra--  

1 
cos r~:~ S t-~ (i ~ t)~-kp (t) -~ ~ (~--i) t - a  ~ - -  ~. dr, 

o 

2 V I - - ~  2 ~ f T  
to=i(q--ql)  ~-~q:ar:ch ~ ( ~ - - t )  ~ q a r c h ~ /  ~ ,  (1.4) 

(p(t)-~- -~ ql ar sh ~ ( t - - t )  ~ q a r c h  ~-}, 

q ~__ h s n ,,t,~ cos net, q: = h: sin gzt cos; gct. (1.5) 

Here T is the depth of the impermeable horizon from the bottom 

of the channel under the origin, ~a  is the angle m the horizontal of 

that horizon, and q and ckt are the reduced flow rates in the upper and 

lower parts, respectively, which are related to h and h=t by (1.5). 
We consider T, a, and h (or q) as in i t ia l  parameters to be spec- 

ified in the solution of (1.4), while h, and the quantity ql in the second 

Fig. 1. Region of infil tration z. 

Fig, 2. Region of the complex potential co. 

Fig. 8. Accessory half-plane of the complex variable C. 
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equation in (1.5) are to be determined, themselves serving to define 
the reduced infiltration flow rate q0 per unit length of channel: 

qo = q~ -- q = (h~ -- h) s i n g a  cos gg.  (1.6) 

Also, parameter/3 of the conformal representation is unknown. 
Numerov used the following two conditions (Figs. 1 and 3) to determine 
this: 

(o~) = 0, = (f / #) = z. (1 .7 )  

From the second equation in (1.3) we have 

( ~ )  = 0, co ( t I ~) = i (q - q~). (1 .8)  

The first formula in (1.4) is used with (i.5), (1.q), and (1.8) to 
get 

1 �9 
t 2 c o s ~  ~ 

h - - T  s i ~ -  [- ~ d f( t)  d t = O ,  
o 

1 
sin na cos ~x~ [h, - -  T ~  + 

1 
2 cos ~ ~, ~ (, - -  t) --1 / (t) ,tt] = 

+ ~ (1 - -  ~)t-  Jo t ~ (t --,at) t, 

(1.9) 

(1.10) 

V f - - a  V T  / (t) = h 1 ar sh ~ (1 --  t) - -  har  ch ~-~ �9 (1.11) 

2. Calculations and preliminary transformations. We solve (1.9) 

for hi: 

[ -~ (_5_r  _ h )  l 
h l ~  [_COS Zt~t \ sin'-~ct 

1 
f (t -- t) ~-t T dt] 

+ 2 h  j - - ~ a r c h V ~  X 
0 

F ~(f - - t )  ~-' ./-i--~ "]-t 
x L 2 j  ~ a r s h V ~ ( ~ r _ 0 j  �9 

o 

(2.1) 

We substitute (2.1) into (1.10) to get an equation for B. We denote 

the left-hand side of this equation by F(13) to get 

F (~) = L (2.2) 

The first step in the program we wrote for the M-20 computer is 
to determine from the interval (0.1) as the root of (2.2). This pro- 
cedure is performed by division into halves ([3], chapter IV, w 
which is applicable if F(15) is a monotonic function. 

As F(0) = 0, F(1) = *% F(8) increases as ~ goes from zero to one. 

We cannot determine whether 15 increases monotonleally (which is 
equivalent to establishing the uniqueness of the solution to (2.2)) by 
direct differentiation of F(15) with respect to ~; however, we hypothesize 
that the increase in F(5)~s sttietly monotonic on an intuitive basis and 
from calculation results, i.e., we assume that 

d F (B) dl 
d~ -- d~ > O, (2.3) 

and we examine from the physical viewpoint some relationships derived 
from the above formulas. 

We differentiate (1.9) and (1.11) with respect m 15: 

i 
(I -- t) ~-I Of (~, t! dt = 0 (2.4) 

J t ~ 
o 

0] (~, t) d~ h ~ / -  t - - ~  
0~ - -  d~ ar sh V ~  -t- 

q- 23]/-~-~- ~ h - -  . (2.5) 

It follows from (2.4) that 0f(B, t)/0/t changes sign in the interval 

(0.1) while (2.5) indicates that this is possible only when dht/d15 and 
h -- hi/(1 - t3) I/z are opposite in sign, the other terms on the right in 
(2.5) being positive throughout the region {0 < t < 1) x (0 < 8 < 1)}. We 
also assume that (2.3) is correct to get 

dht 0 hi 
- ~ >  fo~ h <  t/~__~- ~ , 

dhl hi 
d - - r < 0  for h >  r  (2 .6 )  

Returning now to (1.1)-(1.3), we see that in cases (a) and (b) 
(filtration from the channel into the ground), h increases with l ,  i .e . ,  
as the infiltrating part of the chaunel expands. The second pair of 
inequalities in (2.5) corresponds to case (c) and is interpreted analogously: 
in bilateral flow to a drain, widening of the latter leads to greater  
uptake of groundwater, which is seen as reduced h 1. However, the fall 
in hi ceases at a certain l; this follows from the fact that g --~ 1 for 

l -~ '% and (2.1) gives hi --~ *% and on further rise case (c) becomes 
case Co). 

In the derivation of tt we determine also h l, and also qe from (1.6); 
then the program has provision for calculating the coordinates of the 
free surface. We omit the parametric equations for the free surface, 
which for the tight branch BC (1 < g < 1/~) are derived directly by 
separating the real and imaginary parts in the first equation of (1.4), 
and which for the left branch AD (--.o < g < 0) are obtained by first 
transforming the right-hand side of this equation while avoiding the 

singularities. One of the basic points is as follows in reducing the initial 
formulas to a form suitable for computer use. 

Parameter g varies outside the range [0,1] for points on the free 
surface, and so the integral on the right in the first equation of (1.4) is 
not singular, but the integrand has singularities at the ends of the range 
of integration. The integrat is calculated numerically (by Simpson's 
rule) on the computer, so these singularities must be avoided by iso- 
lating end parts [O,s] and [1 - e ,1 ] .  The remaining interval [s ,1 -- 
- e] is covered by the computation, while the integrals for [0,6] and 
[1 - -  ~, 1] are represented by approximate expressions. 

Numerov's solution and the program based on it are suitable for all 
three cases of section 1. Special attention was given to cases charac- 
teristic of irrigation, where h < T, i . e . ,  case (a) or (b) of section 1. 
For each particular ease we specified l ~ = l / T ,  h ~ = h /T  and a ,  and 
thereby derived dimensionless values for the geomettical characteristics 
of the flow (assigned to T) and of the influx from the channel. 

q0 ~  % /  T =  Q 0 / k T ,  

in which Q0 is the flow from unit length of channel (mS/day per meter) 
and k is the soil infiltration factor. 

3. Results. The purpose was to examine q0 and the shape of the 
free surface in relation to l ~ h ~ and cq The results are as follows. 

1) Change in l ~ for a given T means change in width l ,  and this 
has very little effect on the infiltration characteristics under certain 

0 0 conditions, as Fig. 4 shows for log ~ as a function of log l for h = 
= 0.2 and a of 10 -z, 10 -s, 10 -4, and 10 -s via the data of Table 1. 

s L ~ 

-I 

% 

Fig. 4. Dependence of log ~ on 
log l ~ for h ~ = 0.2. 
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Table 1 

Relation between ) ~ and h~ (h ~ = 0.2) 

~ 6 - t 0 - '  24-t0 - I  0.3456 0 . t25 0.354 

tO-,t 

t0-~ 

t 0 - '  

1 o 

l o 

ht o 
l o 

ht o 

2.5t3.  tQ -a 
t.0000 
0.999856 
2.509. lO-~ 
t.0000 
0.998567 
2.~69.t0--~ 
0.9999 
0.985845 
0:02t30 
0.9999 
0.878444 

t,035-10 -~ 
0.2426 
0,999926 
3 .287 . t9 - i  
0.7638 
0,999225 
2.566-10-~ 
0.9700 
0.992319 
0,02299 
0.9969 
0.92988i 

0.005037 
0.004989 
0.999956 
9,095261 
0.9477~ 
0.999559 
7.488.107 ~ 
0.3339 
0.995610 
0.02858 
0.8334 
0.958765 

O. 04252 
5.910. I0-~ 
0.999973 
O, 04274 
0.005878 
0,9997~5 
4. 486- lO - s  
5.584. lO -z 
O. 997364 
6.540. tO- '  
0.3720 
0.975009 

0.t389 
1.8lO.1O-~ 
0.999985 
0.t391 
0.00i607 
0.999846 
0. t410 
i .778.10-~ 
0.998464 
0.t693 
0.1539 
0.985513 

a ~ 0.646 0.875 0.9844 0.9997558~ 0.999999941 

0~66i9 
.3.797.t0-s 
t.000007 
0.6821 
3,796.t0 -a  
t.00007t 
0.6642 
3,787.19-~ 
t.0097t3 
0.6849 
3,702.I0 -= 
1.007645 

iO 4 

10-4 

lO-a 

t .3239 
1,899.t0-s  
t .  000028 
1.3242 
t .899. t0-4 
1. 000281 
t.3280 
t.899.10 -~ 
1,0028t6 
i .  3654 
t .906. t0  -~ 
1.0289 

0.3310 
7.594.10-~ 
0.999995 
0.33t2 
7.589.t0 -~ 
0.9999i9 
0.3330 
7.542. t0-z 
0.999498 
0,3~13 
7.t09,10 -~ 
0,995587 

2,3477 
9.496. t0-s  
I.O00os9 
2.6489 
9,496,t0-~ 
1.000694 
2.6599 
9 .53t . i0-~  
1.096966 
2.7734 
9.874.10-~ 
t.072229 

~~ 
~o 

~,o 
lo 

~,o 
to 

5.2957 
4.747-10-| 
t.000t52 
5.2998 
4.571.t0-5 
t .00i526 
5.3408 
4.796,t0"-4 
1.915370 
5.7741 
5.2~8.t0 -s  
t . t65203 

? 
o 

~z 

i 

~5 

TaMe 2 

Relation between l ~ h~, ~ and the Quantities x5 (5 = 0.1, 0.01, 0.001) 

I§ 7 '~ 0.05 0.2 0.5 0.9 0.05 0,9 

I xO.1 [ 
xo.ot  I 

]11 xo,o0tl i 

Jx0 . t  
I =o.oi-I 
I =o.oolj 

]t ~ 

IxO.t ] 
[ xo.ot I 
I =o.ooli 

lh( o 

I x0.11 
I xo.ot 1 
I xo.oot[ 

2,984.t0 -~ 
0.9~98 
t.OOOO 
30672 
37205 
41144 

5.2957 
t ,0002 
5,637.16 -( 
30677 
372tt 
41150 

0.95 l 

5.002932 I 
0.9832 
0,9999 
300.98 
366.23 
405.78 

5,34t t  
1,0t54 
5,678,10 -~ 
306.44 
371.8t 
411.38 

"2.5t3.10-6 1,571.10-5 
0.9999 0.9999 
l.OOOO 1.0000 
35544 38597 
53152 78297 
68069 115164 

5.2957 5,2957 
t.0002 1.0002 
~ .797. t0- '  1 .96%10- '  
35548 38599 
53157 78-30t 
68074 115167 

10-~ 

0.2 I 0,5 

).092469 0.001543 
).9858 10.9912 
3.9999 0.9999 
~50.58 378.60 
525.81 773.2t 
674.63 t145.5 

5.3408 5.340~ 
t .0t54 t .0 t54 
4.796,t0 3,032.t9-  
365.91 984.98 
779.56 695.98 
68t.87 t t 5 t . 8 t  

3 . t 42 , t0 - '  
t.OOO9 
1.0000 

69624 
135761 

5.295~ 
1,0902 
5.94t.10 ~7 

69625 
195~62 

0.9 

0.0003086 
029082 
0.9999 

683. t t  
t350.9 

5.3397 
1.0154 
6,786. t0-  

87,183 
1359.8 

2.979.10-~ 
0.9983 
l.OOO0 
3062,3 
3705.9 
4t09.7 

8.2998 
i.O015 
5.649.10 -~ 
3065,9 
3726.0 
4t14.8 

0.05 

0.02529 
0.8556 
0.9999 
26,008 
32.934 
36,234 

5.7769 
t . t653 
0.00606 
30.780 
37,183 
41,804 

0,2 0,5 

2.509.10-,t : t .568.10-~ 
O ,9986 0.9991 
1.0000 1.0000 
3547.8 3843.1 
5301,6 7804.1 
66t0.6 11526 

5.2998 5.2997 
l.OOl5 I .OOi5 
4.751.I0-~ 2.973,10 -5 
3572.9 3845.6 
5331.3 78072 
6822.4 ti529 

10-2 

I 0.2 I 0.5 

0.02180 0.0~331 
0.8784 0.9250 
0.9999 0,9999 
30.75t 33,383 
48.508 73584 
63.7t4 tt2,301 

5.774t 5.7685 
1.1853 1.1650 
0.09525 0,00762 
36.162 39.4t6 
53,353 78.418 
68,567 1t8,24 

3. t36.19-5 
0.9998 
1,0000 

6877.8 
13665 

5.2997 
t.0015 
6.018.10-" 

6942,6 
13620 

t 0.2 

0.002664 
O .9348 
O. 9999 

65.661 
135.12 

5.7810 
1.1348 
0.00144 

74.449 
t45.89 

O,'Oj o/0 0/~ 0~0 OM ,z30 

Fig. 5. Dependence of q~ on c~ for l ~ = 0.5 and 
h ~ =0 .3 ,  

O~ . ~g ~J Z.o Z5 30 

Fig. 6. Dependence of q~ on T for l = 0,5 m 

a n d h =  0 . 3 m .  

The quantity 

qo ~ Qo ( 3 . 1 )  
n = T  =-~7-, 

has been called [4] the flooding coefficient;  it represents the ratio of 
the actual  influx Q0 to the flow rate kl in free infiltration. 

The lines of Fig. 4 are almost  straight, and the slopes differ little 
from --1; they are represented approximately by 

l g  ~ ~ l g A  - -  ( t  - -  ~)  l g  l ~ = t g B  - -  ( t  - -  9 )  l g  l ,  ( 3 . 2 )  

in which B and p are constants. The parameter  B is discussed below, 
while p is a quantity of the order of 0.0001-0.03 (increasing with a) .  
The # for the lines in Fig. 4 are 0.023, 0.002, 0.0002, and 0,0001. 

We transform (3.2) to 
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or, from (3.1), 

qo "~ B l~  : (3.3) 

Then (3.3) ref lec ts  d i rec t ly  the  weak dependence  of q0 on l .  

27 There is a I inear  dependence  of q0 on h,  T, and ct for a < 0.01, 

and the following approx imate  re la t ion  appl ies :  

q0 ~ ~ ( r  - -  h). (3,4) 

Numerov [1] noted this, and our ca lcu la t ions  conf i rm i t  comple t e ly .  

Relation (3.47 is i l lus t ra ted  by the dependence  of q0 on a (Pig. 5 for l = 

-= 0.5, h = 0.3, T = 17 and on T (Fig.  6 for l = 0.5 and h = 0.3). Pigure 

5 shows tha t  the s t r a igh t - l i ne  dependence  of q0 on a for sma l l  a 

gradual ly  ceases  to apply  as a increases .  In Fig. 6, q0(T7 for a = 0.01 
is a lmos t  a straight  l ine ,  whi le  a curve  appl ies  for a = 0.1. However,  

a = 0.1 ( inc l ina t ion  18 ~ is outside the p rac t i ca l  range of a .  
Comparison of (1.6) and (3.4) shows tha t  h 1 ~ T for sma l l  a ,  which 

Numerov [1] noted and which is conf i rmed by Tab le  1. Prom (3.3) and 

(3.4) we get  app rox ima te ly  tha t  

q o ~  am ( r - -  h)l ~" (B = h a ( T - - h ) ) ,  (3.57 

in  which p is a smal l  constant .  
3) The lef t  and r ight  branches of the free surface have  asymptotes  

pa ra l l e l  to the i m p e r m e a b l e  horizon and a t  dis tances  h and h I from 
the la t ter  (Fig. 17. The ca lcu la t ions  showed that  the free surface very 
near ly  coincides  with the asympto te  on the-r ight  after a ve ry  short 

d is tance ,  whereas the depth exceeds  the na tura l  depth for a con- 

s iderable  d i s tance  on the lef t .  

In the ca lcu la t ions  on the lef t  branch we de te rmined  the values  

x 5 of the x -coord ina te  for which Ay < 6,  in  which Ay is the ve r t i ca l  

d is tance  be tween  the  free surface and the asympto te .  Tab le  2 gives  

the absolute va lues  (by v i r tue  of the  c h o i c e  of coordinate  sys tem,  x 5 < 
< 07 for 5 of 0.1, 0.01, and 0.001 (the l inear  charac te r i s t i cs  are  referred 

to T). 
The quanti ty Ay can  serve as a measure  of the wa t e r - t ab l e  rise, 

whi le  x 6 indica tes  the range of tha t  rise.  The la t ter  concep t  is as ar-  
bi t rary as tha t  of the radius of ac t ion  of a borehole  when the  depression 

funnel is of un l imi t ed  s ize .  The dependence  of x 6 on l is  ve ry  s l ight ,  

spec ia l ly  for smal l  a,  so the tab le  gives  only the largest  and smal les t  

values  of [xsl for each  of the values  of a and h ~ The first corresponds 

to the m i n i m u m  va lue  of 13 out of those used in  the ca lcu la t ions  (13 
6 -10-8), whi le  the second represents the m a x i m u m  va lue  of t3 

( ~ 1 - 6  [10-sT. Since 6 = 0.1 equals  the depth of the na tura l  f low for 

h ~ = 0.9, i t  cannot  serve as a measure  of the wa te r - t ab le  rise, and so 
the corresponding columns of Tab le  2 do not  conta in  Ix0.~l. The 

Ix0.1[ for the other h ~ in the t ab le  is of the order of 1/~r(x, which de-  
fines the d is tance  from the channe l  to the point  where the imper -  
m e a b l e  horizon mee t s  the hor izon ta l  axis.  

47 If  h = 0, the c a l cu l a t i on  formulas are derived d i rec t ly  from 

the equations for the genera l  case  i f  we put q = 0 in these.  The c a l -  
cula t ions  conf i rm Numerov's  approx imate  relat ions for the coordinates 

L and H of the point a t  which the free surface emerges on the i m p e r -  

m e a b l e  layer  in  the upper part of the flow: 

L ~ - -  T c t g u a ,  H ~ 0 .  

These equat ions i nd i ca t e  tha t  he re  the  flooded zone extends to the 

point  a t  which the i m p e r m e a b l e  layer  mee t s  the hor izonta l  coordinate  

axis ,  and the free surface in  tha t  zone is near ly  hor izonta l ,  with v i r -  

t ua l ly  no inf i l t ra t ion ,  
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